Como presentar un informe de laboratorio
En el anexo 1 puedes observar un modelo de informe de laboratorio.
Después de realizar un experimento, el estudiante debe presentar un informe de laboratorio. Aunque existen diferentes estilos de informes, lo cual depende de los objetivos de cada curso, se sugiere que el informe tenga el siguiente contenido:
1. Portada2. Objetivos3. Marco teórico4. Datos y/o observaciones5. Gráficos 6. Cálculos y resultados7. Conclusiones y discusión8. Respuesta a las preguntas9. Bibliografía
El informe se debe presentar en hojas de papel blanco tamaño carta y escrito a una sola tinta –también se puede utilizar un procesador de texto como Word ©-. A excepción de la portada, a la cual se asigna una única hoja, el resto del contenido se escribe en forma continua en las páginas interiores. Si el informe es hecho a mano, la letra debe ser perfectamente legible, sin enmendaduras y debe evitarse el uso de correctores (como liquid paper).
2.1 Descripción breve del contenido
• Portada. La información que se debe anotar en la portada es la siguiente:a. Nombre de la instituciónb. Nombre, código y grupo del curso de laboratorioc. Título de la práctica realizadad. Nombre(s) y código(s) del (los) estudiante(s) que presentan el informee. Nombre del profesor que dirige el cursof. Ciudad y fecha
• Objetivos. Son las metas que se persiguen al realizar la experimentación. Normalmente se resumen en tres o cuatro.
• Marco teórico. Se trata de un resumen de los principios, leyes y teorías de la Química que se ilustran o aplican en la experiencia respectiva.
• Datos / observaciones. Los datos se refieren a aquellas cantidades que se derivan de mediciones y que se han de utilizar en el proceso de los cálculos.
Una cantidad es una expresión que denota la magnitud de una propiedad. La cantidad consta de un símbolo y de unas unidades que corresponden a los establecidos por el Sistema Internacional de Unidades, además su valor numérico debe contener el número apropiado de cifras significativas.
En los datos, los reactivos químicos (elementos y/o compuestos), se representan por medio de símbolos y fórmulas químicas.
• Gráficos. Los gráficos que hacen parte de un informe por lo general cumplen dos objetivos: (a) Proporcionan información a partir de la cual se pueden obtener datos complementarios y necesarios para los cálculos; en otras palabras, hacen parte de los datos. (b) Representan la información derivada de los cálculos; es decir, hacen parte de los resultados.
• Cálculos y resultados. Los resultados surgen al procesar los datos de acuerdo con principios o leyes establecidas. Deben presentarse preferiblemente en forma de tabla junto con un modelo de cálculo que exprese, mediante una ecuación matemática apropiada, la forma como se obtuvo cada resultado.
• Conclusiones y discusión. Aquí se trata del análisis de los resultados obtenidos a la luz de los comportamientos o valores esperados teóricamente. Específicamente la discusión y las conclusiones se hacen con base en la comparación entre los resultados obtenidos y los valores teóricos que muestra la literatura química, exponiendo las causas de las diferencias y el posible origen de los errores. Si hay gráficos, debe hacerse un análisis de regresión para encontrar una ecuación que muestre cuál es la relación entre las variables del gráfico.
• Respuesta a las preguntas. En cada práctica se hacen una serie de preguntas importantes que el estudiante debe responder en su informe. Debe escribirse la pregunta junto con una respuesta clara y coherente.
• Bibliografía. Se consigna la bibliografía consultada y de utilidad en la elaboración del informe. La bibliografía de libros y/o artículos debe ajustarse a las normas establecidas internacionalmente.
martes, 9 de marzo de 2010
quimika industrial
Química Industrial es la rama de la química que aplica los conocimientos químicos a la producción de forma económica de materiales y productos químicos especiales con el mínimo impacto adverso sobre el medio ambiente.
Aunque tradicionalmente se adaptaba a escala industrial un proceso químico de laboratorio, actualmente se modelizan cuidadosamente los procesos según su escala. Así, se ponen en juego fenómenos como la transferencia de materia o calor, modelos de flujo o sistemas de control que se agrupan bajo el término de Ingeniería Química.
Para la predicción de los efectos de los modelos de flujo de fluidos y calor, así como de la transferencia de cantidad de movimiento, y para la evaluación de efectos sólo abordables empíricamente, las plantas piloto a escala reducida son muy utilizadas, aprovechándose para el dimensionado definitivo y la selección de materiales y equipos.
La adaptación del laboratorio a la fábrica es la base de la industria química, que suele reunir en un solo proceso continuo y estacionario (aunque también opera por cargas) las operaciones unitarias que en el laboratorio se efectúan de forma independiente. Estas operaciones unitarias son las mismas sea cual sea la naturaleza específica del material que se procesa. Algunos ejemplos de estas operaciones unitarias son la molienda de las materias primas sólidas, el transporte de fluidos, la destilación de las mezclas de líquidos, la filtración, la sedimentación, la cristalización de los productos y la extracción de materiales de matrices complejas.
La Química industrial está en continua evolución. Modernamente van perdiendo importancia los procesos de producción en gran cantidad y de escaso valor añadido, frente a los productos específicos de gran complejidad molecular y síntesis laboriosa. Por otro lado, al tradicional aprovechamiento de subproductos y energía por motivos económicos se ha añadido la preocupación por el medio ambiente y los procesos sostenibles (Green Chemistry)
La metodología y la tecnología de la Química Industrial es la Ingeniería Química, la cual fue definida así por el Simposio Internacional sobre enseñanza de la Ingeniería Química,( Londres 1981)
“La Ingeniería Química es una disciplina en la que cuatro procesos de transferencia de calor, transferencia de materia, transferencia de cantidad de movimiento y cambio químico (incluyendo el cambio bioquímico) se combinan con las ecuaciones fundamentales de conservación y leyes de la Termodinámica para aclarar los fenómenos que tienen lugar en los equipos y en las plantas de proceso”.
Referencias y bibliografía
VIAN ORTUÑO A. “Introducción a la Química Industrial”. 2a ed.. Ed. Reverté, S.A.
Barcelona, 1994.
Tegeder F., Mayer L. “Métodos de la Industria Química. I. Inorgánica”. Ed. Reverté (1987)
Universidades que Enseñan Química Industrial
Aunque tradicionalmente se adaptaba a escala industrial un proceso químico de laboratorio, actualmente se modelizan cuidadosamente los procesos según su escala. Así, se ponen en juego fenómenos como la transferencia de materia o calor, modelos de flujo o sistemas de control que se agrupan bajo el término de Ingeniería Química.
Para la predicción de los efectos de los modelos de flujo de fluidos y calor, así como de la transferencia de cantidad de movimiento, y para la evaluación de efectos sólo abordables empíricamente, las plantas piloto a escala reducida son muy utilizadas, aprovechándose para el dimensionado definitivo y la selección de materiales y equipos.
La adaptación del laboratorio a la fábrica es la base de la industria química, que suele reunir en un solo proceso continuo y estacionario (aunque también opera por cargas) las operaciones unitarias que en el laboratorio se efectúan de forma independiente. Estas operaciones unitarias son las mismas sea cual sea la naturaleza específica del material que se procesa. Algunos ejemplos de estas operaciones unitarias son la molienda de las materias primas sólidas, el transporte de fluidos, la destilación de las mezclas de líquidos, la filtración, la sedimentación, la cristalización de los productos y la extracción de materiales de matrices complejas.
La Química industrial está en continua evolución. Modernamente van perdiendo importancia los procesos de producción en gran cantidad y de escaso valor añadido, frente a los productos específicos de gran complejidad molecular y síntesis laboriosa. Por otro lado, al tradicional aprovechamiento de subproductos y energía por motivos económicos se ha añadido la preocupación por el medio ambiente y los procesos sostenibles (Green Chemistry)
La metodología y la tecnología de la Química Industrial es la Ingeniería Química, la cual fue definida así por el Simposio Internacional sobre enseñanza de la Ingeniería Química,( Londres 1981)
“La Ingeniería Química es una disciplina en la que cuatro procesos de transferencia de calor, transferencia de materia, transferencia de cantidad de movimiento y cambio químico (incluyendo el cambio bioquímico) se combinan con las ecuaciones fundamentales de conservación y leyes de la Termodinámica para aclarar los fenómenos que tienen lugar en los equipos y en las plantas de proceso”.
Referencias y bibliografía
VIAN ORTUÑO A. “Introducción a la Química Industrial”. 2a ed.. Ed. Reverté, S.A.
Barcelona, 1994.
Tegeder F., Mayer L. “Métodos de la Industria Química. I. Inorgánica”. Ed. Reverté (1987)
Universidades que Enseñan Química Industrial
Suscribirse a:
Entradas (Atom)